TOPICS

oBasic concepts of Set theory

- Types of Set
oOperations on Sets
oLaws of Set theory (Set Identities)

Basic Definition

- A collection of well defined objects is called a set and described with in braces(\{\}).
- The uppercase English alphabets, with or without subscripts, are used to denote sets and lowercase English alphabets are used for denote objects of the set.
- E.g. A set of all Alphabets $A=\{a, b, c, \ldots . ., z\}$
- Any object in the set is called element or member of the set.
- If x is an element of the set A, then we can read as " " x belongs to A " or " x is in A ", and if x is not an element of X, then we can read as " x does not belongs to A"

Cont.

- Typically sets are described by two methods
* Roster or list method:
-In this method, all the elements are listed in braces.

$$
\text { E.g. } A=\{2,3,5,7,11,13\}
$$

* Set-Builder method:
-In this method, elements are described by the property they satisfy.
E.g. $\mathrm{A}=\{\mathrm{x}: \mathrm{x}$ is a prime number less than 15\}

Cardinality

oThe number of elements in the set A is called cardinality of the set A, denoted by $|\mathrm{A}|$ or $\mathrm{n}(\mathrm{A})$.
-We note that in any set the elements are distinct. The collection of sets is also a set.

$$
\text { E.g. } S=\{2,\{3,5\}, 7,11,13\}
$$

oHere $\{3,5\}$ itself one set and it is one element of S and $|S|=4$.

Types of Set

oUniversal set

- A set which contains all objects under consideration is called as Universal set and is denoted by E or U .
- E.g. For example, $U=\{0,1,2,3,4,5,6,7,8,9\}$ may be considered as a universal set when we consider sets $\mathrm{A}=\{0,1,3,5\}$ and $B=\{1,4,7\}$

Cont......

oFinite or Infinite

- A set is called finite if it contains finite number of distinct elements; otherwise, a set is infinite.
oE.g. $\mathrm{A}=\{$ Charles, Kumar, Mohan, Ravi\} is a finite set
oE.g. $\mathrm{B}=\{1,2,3,4,5, \ldots \ldots \ldots\}$ is an infinite set

Cont......

- Null Set
- A set contains no element is called a null set.
- It is also called an empty set or a void set, or a zero set.
- It is usually denoted by the $\operatorname{Phi}(\varnothing)$ or two empty braces ($\}$).
-For example, the set of prime numbers between 8 and 10 is null set.

Cont

oSubset

- A set A is said to be a subset of set B, if every element of A is also an element of B .
- It is denoted by ' \subseteq ' $\mathrm{A} \subseteq \mathrm{B}$.
- E.g. $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{1,2,3$, $4,7,8\}$ Then $A \subseteq B$.
- Note that

1. A set is subset of itself.
2. Null set is subset of every set.

Cont......

oSuperset

- A set A is said to be a superset of set B, if B is a subset of A.
- It is denoted by $\mathrm{A} \supseteq \mathrm{B}$.
- E.g. $\mathrm{A}=\{1,2,3,4,7,8\}$ and $\mathrm{B}=$ $\{1,2,3,4\}$ Then $\mathrm{A} \supseteq \mathrm{B}$.

Cont......

- Proper subset
- A set is A is said to be a proper subset of B, if A is a subset of B and there is at least one element in B , which is not an element of A.
- E.g. $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{1,2,3,4$, 7, 8 \}
- Here A is a Proper Subset of B

Cont......

- Singleton Set
- A set contains only one element is called a singleton set.
- For example, the set of prime numbers between 24 and 30 is a singleton set, its Only element being 29.

Cont

oPower set

- A power set of a set A, denoted by $\mathrm{P}(\mathrm{A})$, is set of all subsets of A .
- E.g. If $\mathrm{A}=\{1,2,3\}$, then, $\mathrm{P}(\mathrm{A})=\{\emptyset$, $\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2$, $3\}\}$.
- Note: If number of elements in A is n , then the number of elements in the power set of A is 2^{n}.
- We observe that $n(A)=3$ and $n(P(A))=2^{3}=8$

Cont......

- Equal Sets
- Two sets A and B are said to be equal iff $A \subseteq B$ and $B \subseteq A$.
i.e., $A=B \Leftrightarrow(A \subseteq B)^{\wedge}(B \subseteq A)$
oE.g. $A=\{1,3,5,8\}$ and $B=\{1,8,5,3\}$ Then $A=B$

Cont......

- Disjoint Set
- Two set A and B are called disjoint if and only if ,A and B have no element in common.
- Example
- $A=\{1,2,3\} \quad B=\{5,7,9\} C=\{3,4\}$
- $\mathrm{A} \cap \mathrm{B}=\varnothing \quad \mathrm{A} \cap \mathrm{C}=\varnothing \quad \mathrm{B} \cap \mathrm{C}=\varnothing$
- A and B are disjoint and B and C also, but A and C are not disjoint.

Cont......

© Complement of a set

- Let A be any set, and E be universal. The relative complement of A in E is called absolute complement or complement of A.
- The complement of A is denoted by A^{C} (or) $\overline{\mathrm{A}}$ (or) A^{\prime}
- Example
- Let $\mathrm{E}=\{1,2,3,4,5 ., \ldots .$.$\} be universal set and$ $A=\{2,4,6,8, \ldots \ldots\}$ be any set in E, then $\overline{\mathrm{A}}=\{1,3,5,7, \ldots \ldots .$.

Operations on Sets

oUnion of two sets

- The union of two sets A and B is the set of all elements which belong to either A or B or both.
- It is denoted by $\mathrm{A} U \mathrm{~B}$.
- Thus A U B $=\{x / x \in A$ or $x \in B\}$
- For example
\circ if $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{2,4,6\}$, then

$$
\mathrm{A} \cup \mathrm{~B}=\{1,2,3,4,6\} .
$$

Cont......

oIntersection of two sets

- The intersection of two sets A and B is the set of all elements which belong to both A and B .
- it is denoted by $\mathrm{A} \cap \mathrm{B}$
- Thus $\mathrm{A} \cap \mathrm{B}=\{\mathrm{x} / \mathrm{x} \in \mathrm{A}$ and $\mathrm{x} \in \mathrm{B}\}$
oFor example, if $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{2$, $4,6\}$ Then $\mathrm{A} \cap \mathrm{B}=\{2\}$

Cont

O Set Difference (Relative complement)

- The relative complement of a set A in a set B is the set of elements of B which are not the elements of A.
- It is denoted by $\mathrm{B}-\mathrm{A}$.
- Thus $\mathrm{B}-\mathrm{A}=\{\mathrm{x} / \mathrm{x} \in \mathrm{B}$ and $\mathrm{x} \notin \mathrm{A}\}$.
- It is also called the difference between B and A .
- We observe that $A-B=\{x / x \in A$ and $x \notin B\}$
- Thus $\mathrm{A}-\mathrm{B}=\mathrm{B}-\mathrm{A}$ and in fact $(\mathrm{A}-\mathrm{B}) \cap(\mathrm{B}-\mathrm{A})=\varnothing$.
- For example if $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{2,4,6\}$ Then $\mathrm{B}-\mathrm{A}$ $=\{4,6\}$, while $\mathrm{A}-\mathrm{B}=\{1,3\}$

Cont

- Symmetric difference
- The symmetric difference or Boolean sum of two sets A and B is the difference set between A U B and $A \cap B$.
- It is denoted by $A+B$ (or) $A \oplus B$.
- Thus $\mathrm{A}+\mathrm{B}=(\mathrm{A} U \mathrm{~B})-(\mathrm{A} \cap \mathrm{B})=\{\mathrm{x} / \mathrm{x} \in(\mathrm{AUB})$ and $\mathrm{x} \notin(\mathrm{A} \cap \mathrm{B})\}=(\mathrm{A}-\mathrm{B}) \mathrm{U}(\mathrm{B}-\mathrm{A})$
- Example
- If $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{2,4,6\}$ Then $\mathrm{A} \mathrm{U}=\{1,2$,
$3,4,6\}$ and $\mathrm{A} \cap \mathrm{B}=\{2\}$ So that, $\mathrm{A}+\mathrm{B}=\{1,3,4,6\}$

Cont

- Cartesian product

- The Cartesian product of two sets A and B is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$.
- It is denoted by A X B.
- Thus A X B $=\{(\mathrm{a}, \mathrm{b}) / \mathrm{a} \in \mathrm{A}$ and $\mathrm{b} \in \mathrm{B}\}$
- Let $\mathrm{A}=\{1,2\}$ and $\mathrm{B}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ then
- AXB=\{(1,x), (1,y), (1, z), (2, x), (2, y), (2, z) \}
- B X A $^{\prime}=\{(x, 1),(x, 2),(y, 1),(y, 2),(z, 1),(z, 2)\}$
- $\mathrm{AXA}=\{(1,1),(1,2),(2,1),(2,2)\}$
- B X B $=\left\{(x, x),(x, y),(x, z),(y, x),(y, y),(y, z),\left(z, x_{2}\right)\right.$, (z, y), (z, z) \}

Set Identities

$A \cup A=A$
$A \cap A=A$
$A \cup B=B \cup A$
Idempotent laws

Commutative laws
$A \cap B=B \cap A$
$(A \cup B) \cup C=A \cup(B \cup C)$
Associative laws
$(A \cap B) \cap C=A \cap(B \cap C)$

Cont......

$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
Distributive laws
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
$A \cup(A \cap B)=A$
$A \cap(A \cup B)=A$
$\overline{(A \cup B)}=\bar{A} \cap \bar{B}$
Absorption laws

De Morgan's laws
$\overline{(A \cap B)}=\bar{A} \cup \bar{B}$

Cont......

AU $\varnothing=\mathrm{A}$ $\mathrm{A} \cap \mathrm{U}=\mathrm{A}$

Identity Laws
$\mathrm{A} \cup \overline{\mathrm{A}}=\mathrm{U}$
$A \cap \bar{A}=\varnothing$
$\overline{\bar{A}}=\mathrm{A}$

Complement Laws

Double Complement Law

Thank You

