RODUCTION TO SET THEORY

A.Charles, M Sc., PGDCA., MPhil(CS)., Associate Professor in Computer Science, St.Joseph's College (Autonomous), Tiruchirappallai-620 002.

•Basic concepts of Set theory
•Types of Set
•Operations on Sets
•Laws of Set theory (Set Identities)

Basic Definition

- A collection of well defined objects is called a set and described with in braces({}).
- The uppercase English alphabets, with or without subscripts, are used to denote sets and lowercase English alphabets are used for denote objects of the set.
 - E.g. A set of all Alphabets A={ a, b, c,....,z}
- Any object in the set is called element or member of the set.
- If x is an element of the set A, then we can read as "x belongs to A" or "x is in A", and if x is not an element of X, then we can read as " x does not belongs to A"

Typically sets are described by two methods
Roster or list method:

-In this method, all the elements are listed in braces.

E.g.
$$A = \{2, 3, 5, 7, 11, 13\}$$

Set-Builder method:

-In this method, elements are described by the property they satisfy.

E.g. $A = \{ x : x \text{ is a prime number less} \}$ than 15}

Cardinality

- •The number of elements in the set A is called cardinality of the set A, denoted by |A| or n(A).
- •We note that in any set the elements are distinct. The collection of sets is also a set.

E.g. S = $\{2, \{3, 5\}, 7, 11, 13\}$

•Here $\{3, 5\}$ itself one set and it is one element of S and |S|=4.

Types of Set

oUniversal set

- A set which contains all objects under consideration is called as Universal set and is denoted by E or U.
- E.g. For example, U = {0,1,2,3,4,5,6,7,8,9} may be considered as a universal set when we consider sets A = {0,1,3,5} and B = {1,4,7}

•Finite or Infinite

- A set is called finite if it contains finite number of distinct elements; otherwise, a set is infinite.
 - •E.g. A={Charles, Kumar, Mohan, Ravi} is a finite set

•E.g. $B = \{1, 2, 3, 4, 5, \dots\}$ is an infinite set

oNull Set

- A set contains no element is called a null set.
- It is also called an empty set or a void set, or a zero set.
- •It is usually denoted by the Phi(Ø) or two empty braces({ }).
- •For example, the set of prime numbers between 8 and 10 is null set.

oSubset

- A set A is said to be a subset of set B, if every element of A is also an element of B.
- It is denoted by ' \subseteq ' $A \subseteq B$.
- E.g. $A = \{1, 2, 3, 4\}$ and $B = \{1, 2, 3, 4, 7, 8\}$ Then $A \subseteq B$.
- Note that
 - 1. A set is subset of itself.
 - 2. Null set is subset of every set.

oSuperset

- A set A is said to be a superset of set B, if B is a subset of A.
- •It is denoted by $A \supseteq B$.
- E.g. A = { 1, 2, 3, 4, 7, 8 } and B = {1, 2, 3, 4 } Then A ⊇B.

•Proper subset

- A set is A is said to be a proper subset of B, if A is a subset of B and there is at least one element in B, which is not an element of A.
- E.g. A = {1, 2, 3, 4 } and B = { 1, 2, 3, 4, 7, 8 }
- Here A is a Proper Subset of B

•Singleton Set

- A set contains only one element is called a singleton set.
- For example, the set of prime numbers between 24 and 30 is a singleton set, its Only element being 29.

•Power set

- •A power set of a set A, denoted by P(A), is set of all subsets of A.
 - E.g. If $A = \{ 1, 2, 3 \}$, then, $P(A) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$.
 - Note: If number of elements in A is n, then the number of elements in the power set of A is 2ⁿ.
 - We observe that n(A) = 3 and $n(P(A)) = 2^3 = 8$

oEqual Sets

- Two sets A and B are said to be equal iff A ⊆ B and B⊆ A.
 i.e., A = B ⇔ (A ⊆ B) ^ (B ⊆ A)
- E.g. A= $\{1,3,5,8\}$ and B= $\{1,8,5,3\}$ Then A=B

oDisjoint Set

•Two set A and B are called disjoint if and only if ,A and B have no element in common.

oExample

- A= $\{1,2,3\}$ B= $\{5,7,9\}$ C= $\{3,4\}$
- $A \cap B = \emptyset$ $A \cap C = \emptyset$ $B \cap C = \emptyset$
- A and B are disjoint and B and C also, but A and C are not disjoint.

Occomplement of a set

- Let A be any set, and E be universal. The relative complement of A in E is called absolute complement or complement of A.
- The complement of A is denoted by A^{C} (or) \overline{A} (or)A'

• Example

• Let $E=\{1,2,3,4,5,...\}$ be universal set and $A=\{2,4,6,8,...\}$ be any set in E, then $\bar{A}=\{1,3,5,7,...\}$

Operations on Sets oUnion of two sets

- The union of two sets A and B is the set of all elements which belong to either A or B or both.
- It is denoted by A U B.
- Thus $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- For example

• if $A = \{1, 2, 3\}$ and $B = \{2, 4, 6\}$, then A U B = $\{1, 2, 3, 4, 6\}$.

17

oIntersection of two sets

• The intersection of two sets A and B is the set of all elements which belong to both A and B.

it is denoted by A∩B
Thus A∩B = {x / x ∈ A and x ∈ B}
For example, if A = {1, 2, 3} and B= {2, 4, 6} Then A ∩B = {2}

Set Difference (Relative complement)

- The relative complement of a set A in a set B is the set of elements of B which are not the elements of A.
- It is denoted by B A.
- Thus B A= $\{x / x \in B \text{ and } x \notin A\}$.
- It is also called the difference between B and A.
- We observe that $A B = \{x \mid x \in A \text{ and } x \notin B\}$
- Thus A B = B A and in fact $(A B) \cap (B A) = \emptyset$
- For example if A = {1, 2, 3} and B = {2,4,6} Then B-A = {4, 6}, while A B = {1,3}

• Symmetric difference

- The symmetric difference or Boolean sum of two sets A and B is the difference set between A U B and $A \cap B$.
- It is denoted by A + B (or) $A \oplus B$.
- Thus $A+B = (A \cup B) (A \cap B) = \{x / x \in (A \cup B)$ and $x \notin (A \cap B)\} = (A-B) \cup (B-A)$

• Example

• If A = $\{1, 2, 3\}$ and B = $\{2, 4, 6\}$ Then A U B = $\{1, 2, 3, 4, 6\}$ and A \cap B = $\{2\}$ So that, A+B = $\{1, 3, 4, 6\}$

20

• Cartesian product

- The Cartesian product of two sets A and B is the set of all ordered pairs (a, b) where a \in A and b \in B.
- It is denoted by A X B.
- Thus $A X B = \{(a, b) / a \in A \text{ and } b \in B\}$
- Let $A = \{1, 2\}$ and $B = \{x, y, z\}$ then
- A X B = {(1, x), (1, y), (1, z), (2, x), (2, y), (2, z)}
- B X A = {(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)}
- A X A = {(1, 1), (1, 2), (2, 1), (2, 2)}
- $OB X B = \{(x, x), (x, y), (x, z), (y, x), (y, y), (y, z), (z, x), (z, y), (z, z)\}$

Idempotent laws

Commutative laws

Associative laws

Cont	
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive laws
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
$A \cup (A \cap B) = A$	Absorption laws
$A \cap (A \cup B) = A$	
$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$	De Morgan's laws
$\overline{(A \cap B)} = \overline{A} \cup \overline{B}$	

AUØ=A A∩U=A

Identity Laws

AUĀ=U A∩Ā=Ø

Complement Laws

 $\bar{A} = A$ Double Complement Law

Thank You